Elasticity size effects in ZnO nanowires--a combined experimental-computational approach.

نویسندگان

  • Ravi Agrawal
  • Bei Peng
  • Eleftherios E Gdoutos
  • Horacio D Espinosa
چکیده

Understanding the mechanical properties of nanowires made of semiconducting materials is central to their application in nano devices. This work presents an experimental and computational approach to unambiguously quantify size effects on the Young's modulus, E, of ZnO nanowires and interpret the origin of the scaling. A micromechanical system (MEMS) based nanoscale material testing system is used in situ a transmission electron microscope to measure the Young's modulus of [0001] oriented ZnO nanowires as a function of wire diameter. It is found that E increases from approximately 140 to 160 GPa as the nanowire diameter decreases from 80 to 20 nm. For larger wires, a Young's modulus of approximately 140 GPa, consistent with the modulus of bulk ZnO, is observed. Molecular dynamics simulations are carried out to model ZnO nanowires of diameters up to 20 nm. The computational results demonstrate similar size dependence, complementing the experimental findings, and reveal that the observed size effect is an outcome of surface reconstruction together with long-range ionic interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong elasticity size effects in ZnO nanowires

Recently, zinc oxide (ZnO) nanowires have drawn major interest because of their semiconducting nature and unique optical and piezoelectric properties. Various applications for ZnO nanowires have been conceived, including the next generation of field effect transistors, light emitting diodes, sensors and resonators. ZnO nanowires are also envisioned as nanogenerators by exploiting the coupling o...

متن کامل

Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory

In this paper, a numerical solution procedure is presented for the free and forced vibration of a piezoelectric nanowire under thermo-electro-mechanical loads based on the nonlocal elasticity theory within the framework of Timoshenko beam theory. The influences of surface piezoelectricity, surface elasticity and residual surface stress are taken into consideration. Using Hamilton’s principle, t...

متن کامل

In situ observation of size-scale effects on the mechanical properties of ZnO nanowires.

In this investigation, the size-scale in mechanical properties of individual [0001] ZnO nanowires and the correlation with atomic-scale arrangements were explored via in situ high-resolution transmission electron microscopy (TEM) equipped with atomic force microscopy (AFM) and nanoindentation (NI) systems. The Young's modulus was determined to be size-scale-dependent for nanowires with diameter...

متن کامل

Assorted analytical and spectroscopic techniques for the optimization of the defect-related properties in size-controlled ZnO nanowires.

In this article, the important role of the intrinsic defects in size-controlled ZnO nanowires (NWs) which play a critical role in the properties of the NWs, was studied with a combined innovative experimental analysis. The NWs prepared by both the aqueous solution method and chemical vapour deposition process were of increasing length and decreasing size-to-volume (S/V) ratio. The combined appr...

متن کامل

Combined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier

Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2008